Microporous carbon adsorbents with high CO2 capacities for industrial applications.

نویسندگان

  • Santiago Builes
  • Thomas Roussel
  • Camelia Matei Ghimbeu
  • Julien Parmentier
  • Roger Gadiou
  • Cathie Vix-Guterl
  • Lourdes F Vega
چکیده

In this study we attempt to investigate the potential use of two zeolite template carbon (ZTC), EMT-ZTC and FAU-ZTC, to capture CO(2) at room temperature. We report their high pressure CO(2) adsorption isotherms (273 K) that show for FAU-ZTC the highest carbon capture capacity among published carbonaceous materials and competitive data with the best organic and inorganic adsorbing frameworks ever-known (zeolites and mesoporous silicas, COFs and MOFs). The importance of these results is discussed in light of mitigation of CO(2) emissions. In addition to these new experimental CO(2) adsorption data, we also present new insight into the adsorption process of the two structures by Monte Carlo simulations: we propose that two separate effects are responsible for the apparent similarity of the adsorption behaviour of the two structures: (i) pore blocking occurring on EMT-ZTC, and (ii) the change of the carbon polarizability due to the extreme curvature of FAU-ZTC.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Low-cost Adsorbents Used in Heavy Metal Contaminated Waste Water Treatment

In this review, adsorbents used in wastewater treatment and their technical feasibilities are reviewed. Adsorbents are classified as natural adsorbents, and the adsorbents obtained from industrial and agricultural wastes. They all were compared with each other condensing the metal binding capacities, costs and metal removal performances in waste water treatments. Although commercial activated c...

متن کامل

One-Step Synthesis of Microporous Carbon Monoliths Derived from Biomass with High Nitrogen Doping Content for Highly Selective CO2 Capture

The one-step synthesis method of nitrogen doped microporous carbon monoliths derived from biomass with high-efficiency is developed using a novel ammonia (NH3)-assisted activation process, where NH3 serves as both activating agent and nitrogen source. Both pore forming and nitrogen doping simultaneously proceed during the process, obviously superior to conventional chemical activation. The as-p...

متن کامل

Valorisation of spent coffee grounds as CO 2 adsorbents for postcombustion capture applications

In this work spent coffee grounds from single-use capsules were used as the starting material for producing low-cost activated carbons. The activation conditions were selected and optimised to produce microporous carbons with high CO2 adsorption capacity and selectivity, thus with potential to be used as adsorbents in postcombustion CO2 capture applications. Two activation methods are compared:...

متن کامل

Gas adsorption properties of graphene-based materials.

Clean energy sources and global warming are among the major challenges of the 21st century. One of the possible actions toward finding alternative energy sources and reducing global warming are storage of H2 and CH4, and capture of CO2 by using highly efficient and low-cost adsorbents. Graphene and graphene-based materials attracted a great attention around the world because of their potential ...

متن کامل

Furfuralcohol Co-Polymerized Urea Formaldehyde Resin-derived N-Doped Microporous Carbon for CO2 Capture

Carbon-based adsorbent is considered to be one of the most promising adsorbents for CO2 capture form flue gases. In this study, a series of N-doped microporous carbon materials were synthesized from low cost and widely available urea formaldehyde resin co-polymerized with furfuralcohol. These N-doped microporous carbons showed tunable surface area in the range of 416-2273 m(2) g(-1) with narrow...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Physical chemistry chemical physics : PCCP

دوره 13 35  شماره 

صفحات  -

تاریخ انتشار 2011